Skip Navigation
request an appointment my chart notification lp musc-logo-white-01 facebook twitter youtube blog find a provider circle arrow
MUSC mobile menu

STAT

An MUSC blog
Keyword: ph.d.

Fluorescent labeling of KV7 channel expression in neurons

 

Researchers at the Medical University of South Carolina identified potassium channel genes as novel preclinical pharmacogenetic targets that show early promise for reducing heavy alcohol drinking.

 

 

 

 

 

 

Fluorescent labeling of  KV7 channel expression in neurons. Image courtesy of Dr. Patrick Mulholland.

A handful of FDA-approved drugs exist for treating individuals with alcohol use disorder but they have been largely ineffective at reducing the high rates of relapse. As such, there remains a critical need to identify and develop alternative pharmacological treatment options.

Researchers at the Medical University of South Carolina (MUSC), through collaborative efforts with the NIH-funded INIAstress Consortium, have identified novel potassium (K+) channel genes within addiction brain circuitry that are altered by alcohol dependence and correlate with drinking levels in a mouse model of alcohol drinking. Significant reduction of heavy alcohol drinking after administration of a KV7 channel–positive modulator validated Kcnq, one of the identified genes that encodes KV7 type K+ channels, as a potential pharmacogenetic target. These preclinical findings, published in the February 2017 special issue of Alcohol on mouse genetic models of alcohol-stress interactions, suggest that K+ channels could be promising therapeutic targets that may advance personalized medicine approaches for treating heavy drinking in alcoholics.

Alcohol is known to change how neurons fire, and K+ channels play a crucial role in modulating a neuron’s excitability by returning the cell membrane potential back to baseline after the neuron has fired an action potential. Although there is an old literature that links K+ channels and alcohol use disorder, the alcohol field has not actively pursued this line of research.

Recently, the MUSC research team lead by Patrick J. Mulholland, Ph.D., associate professor of Neuroscience and Psychiatry & Behavioral Sciences and senior author on the article, revisited this research area in a novel way. By applying new genomic database technologies, the team became the first to use an experimental genetic bioinformatics approach to determine the relationship between expression levels of brain K+ channel genes with alcohol consumption.

“We looked at all 79 K+ channel genes in an alcohol drinking model using genetically diverse strains of mice and were trying to find the genes that might be risk genes for drinking and the genes that are changed by alcohol dependence,” said Mulholland. “More critically, we wanted to determine how alcohol changed expression of K+ channel genes and how those changes predicted how the mice drank after they were rendered dependent. In other words, we wanted to know what the mechanisms are that facilitate enhanced drinking in alcohol dependence.”

In this preclinical study, INIAstress researchers exposed strains of mice with diverse genetic backgrounds and varied drinking behaviors (BXD recombinant inbred) to alcohol drinking bottles. Half of the mice remained on this protocol and represented non-dependent mice (i.e., mice that consumed alcohol but were not rendered dependent). Alcohol dependence was induced in the other half of mice using a chronic intermittent ethanol exposure model. After 10 weeks, microarray analyses were completed in the prefrontal cortex and nucleus accumbens. Mulholland and colleagues then performed a targeted analysis of K+ channel genes and alcohol drinking in BXD strains using the GeneNetwork software system.

In non-dependent mice, expression levels of several K+ channel genes significantly correlated with the amount of alcohol consumed. Along with identifying novel genes (e.g., Kcnd2), the findings validated genes that were previously implicated in alcohol use disorder.

In particular, low expression levels of Kcnq genes were significantly correlated with high drinking levels. As these correlations were seen prior to dependence, they may represent risk markers for heavy alcohol consumption.

In dependent mice, the expression levels of Kcnq5 were significantly dysregulated across BXD strains, and as the researchers expected, these gene adaptations correlated with the degree of escalated drinking during dependence.

Mulholland and his team were particularly excited by the findings implicating Kcnq genes and KV7 channels in non-dependent and dependent drinking behavior as these findings replicated their previous study in rats (published November 2016 in Addiction Biology). In this prior study, retigabine, an FDA-approved KV7 channel–positive modulator, significantly reduced alcohol consumption in high-drinking non-dependent rats. This study was the first to identify KV7 channels and Kcnq genes as a potential target to reduce heavy drinking.

To further validate Kcnq as a therapeutic target, the researchers induced chronic alcohol drinking in a strain of mice with high drinking behavior (C57BL/6J). After seven weeks, the mice were treated with retigabine. Consistent with the rat studies, retigabine significantly reduced alcohol consumption in high-drinking non-dependent mice. These findings were also consistent with clinical evidence in humans that mutations in KCNQ genes associate with early-onset alcohol dependence.

Together, these studies provide, both genetically and pharmacologically, strong evidence that KV7 channels and KCNQ genes are promising pharmacogenetic targets for treating alcohol use disorder.

“With all of the preclinical and clinical genetic evidence linking KV7 channels and heavy drinking, it would be great to have a precision medicine follow-up study examining the relationship of KCNQ single-nucleotide polymorphisms (i.e., mutations) with retigabine’s response at reducing heavy alcohol drinking and alcohol relapse,” said Mulholland.

Given that retigabine is an FDA-approved drug, its use in a clinical trial on alcohol use disorder is theoretically feasible. However, there is a roadblock to clinical trial development since retigabine’s manufacturer recently announced they will stop making the drug due to commercial reasons.

Fortunately, the path to translating these promising preclinical findings to humans does not end here.  

“There are better drugs that target KV7 channels that are available on the preclinical side,” said Jennifer A. Rinker, Ph.D., postdoctoral fellow in the Department of Neuroscience and first author on the Alcohol paper. “For example, retigabine hits most of the KV7 channel subtypes. There are selective drugs that target just two of the subunits instead of all of them. That’s where we are headed, to figure out which of the subunits are critical for the effects of retigabine to reduce drinking.”

Anti-fibrotic effects of M10 in a mouse model of interstitial lung disease

Caption: Lung tissue isolated from mice that received bleomycin is characterized by extensive infiltration of inflammatory cells, thickening of the alveolar walls, and multiple fibrotic lesions with excessive amounts of extracellular matrix proteins (left). Lung tissue from mice receiving bleomycin + M10 shows significant reduction of cellular infiltrates, decreased thickness of alveolar septa, and reduced accumulation of extracellular matrix proteins (right). Images courtesy of Galina S. Bogatkevich, M.D., Ph.D. Reproduced from Translational Research (http://www.translationalres.com), Volume 170, April 2016, Pages 99–111, with permission from Elsevier.

Summary: Investigators at the Medical University of South Carolina report preclinical findings showing that the M10 peptide reduces collagen production and reverses fibrotic damage due to systemic sclerosis (SSc)–associated interstitial lung disease (ILD) in the April 2016 issue of Translational Research. ILD is one of the deadliest complications of SSc, a chronic autoimmune disease characterized by vasculopathy, autoimmunity, and excessive collagen production and deposition. Lung fibrosis carries a high risk of morbidity/mortality in SSc patients.

 

The results of preclinical studies by investigators at the Medical University of South Carolina (MUSC) reported in the April 2016 issue of Translational Research suggest that the M10 peptide could help protect against fibrotic damage in patients with systemic sclerosis, particularly in those who develop interstitial lung diseases (ILD), its deadliest complication.

Fibrotic diseases, which are characterized by excessive scarring due to overproduction by fibroblasts of collagen or extracellular matrix, account for more than 45% of U.S. deaths—more than cancer—and are estimated to cost $10 billion annually. Despite the prevalence of fibrotic diseases, only a handful of anti-fibrotic agents have been approved by the U.S. Food and Drug Administration, and none is available for systemic sclerosis.

In many ways, systemic sclerosis is the quintessential fibrotic disease, since its scarring can damage any part of the body. “Systemic sclerosis is often more than skin deep, affecting the gastrointestinal tract, the lungs, the heart, the kidneys, and the blood vessels, so it is a model for many other more prevalent fibrotic diseases,” says Richard M. Silver, M.D., Director of the Division of Rheumatology and Immunology at MUSC and a co-author on the article. “Whereas there may be 300,000 Americans with scleroderma/systemic sclerosis, millions of others suffer from fibrosis of these other organ systems.”

M10 is a ten-amino acid peptide formed from the natural cleavage of the receptor tyrosine kinase MET by the caspase 3. MET, also known as hepatocyte growth factor receptor, is thought to protect against injury and fibrosis, but the mechanisms by which it does so have remained unclear.

The MUSC investigators showed that M10 could protect against fibrotic injury in a bleomycin-induced model of ILD and that its anti-fibrotic effects are likely due to its modulation of the transforming growth factor beta 1 (TGF-?1) pathway. TGF-?1 is a cytokine that has been implicated in inflammation and fibrosis.

“We observed that treatment with M10 by intraperitoneal injection markedly improved bleomycin-induced lung fibrosis in mice, suggesting that the M10 peptide may have potential for use in the treatment of scleroderma-associated interstitial lung disease and other forms of pulmonary fibrosis, for example, idiopathic pulmonary fibrosis,” says Galina S. Bogatkevich, M.D., Ph.D., senior author on the Translational Research article. Lead authors for the article are Ilia Atanelishvili, M.S., of MUSC and Yuichiro Shirai, M.D., Ph.D., who holds a dual appointment at MUSC and the Nippon Medical School.

When instilled intratracheally, bleomycin induces fibrotic changes in the lungs, including peribronchial and interstitial infiltration of inflammatory cells, thickening of alveolar walls, and the development of numerous fibrotic lesions with excess deposition of extracellular matrix protein. Using this bleomycin-induced model of lung fibrosis, the MUSC investigators evaluated the anti-fibrotic effects of M10, using a scrambled peptide as a control. The scrambled peptide had the same ten amino acids as M10 but arranged in a different order. Fibrosis was quantitated using the Ashcroft scale, which ranges from 0 (normal) to 8 (totally fibrotic).

As expected, mice receiving bleomycin plus a scrambled peptide showed greater than eight times more lung fibrosis than controls receiving saline and scrambled peptide (Ashcroft scores, 5.63±1.72 vs. 0.69± 0.35). However, Ashcroft scores dropped to 1.67±1.01 when mice were administered both bleomycin and M10, suggesting the anti-fibrotic potential of this peptide.

Because M10 was given on the same day as bleomycin, its anti-fibrotic effects are considered preventive. To establish the therapeutic anti-fibrotic efficacy of M10, Bogatkevich and her MUSC colleagues are planning experiments in which M10 will be administered a week after the instillation of bleomycin, when fibrotic damage has already occurred. If these additional experiments suggest therapeutic efficacy, Bogatkevich hopes to find an industry partner to help take M10 forward into clinical trials.  

Many researchers speculate that there is a final common pathway to fibrosis in many different organ systems. If an anti-fibrotic agent is demonstrated to be effective in systemic sclerosis, which can affect many different organs, it could potentially hold promise for treating fibrotic disease that is confined to particular organ systems as well.

Bogatkevich and the other MUSC investigators also performed in vitro studies to assess the efficacy of M10 in decreasing abnormal collagen production/deposition and to shed light on the mechanism by which it does so. Skin and lung fibroblasts were obtained from three deceased patients with systemic sclerosis with confirmed lung involvement. As expected, these fibroblasts showed high levels of collagen production. Incubation of these fibroblasts with M10 reduced collagen expression in a dose-dependent manner. M10 likewise reduced collagen production induced in normal cells by administration of TGF-?1 without affecting baseline collagen levels.

These findings suggest that the anti-fibrotic effects of M10 may rely on its suppression of the TGF-?1 pathway. Indeed, protein interaction assays showed that M10 likely achieves such suppression by interacting with the Smad2 protein, thereby preventing it from binding to Smad3, which is necessary for the downstream inflammatory effects of the TGF-?1 pathway.
 

Subscribe to Progressnotes

Submit a Story Idea


Current Issue of Progressnotes

Digital EditionPDF | Home

Progressnotes - Spring 2017 cover thumb

Back Issues of Progressnotes

past issues of progressnotes