heart made out of rope to represent fibrotic heartIn patients with heart failure with a preserved ejection fraction (HFpEF), the prescribed treatments for managing comorbid hypertension do not seem to improve mortality as they do in other heart failure patients. Now MUSC researchers want to know why. In patients with HFpEF, who account for about half of all heart failure cases, the ventricles gradually thicken and stiffen, preventing normal relaxation from beat to beat. The underlying myocardial changes responsible for HFpEF development have proven elusive, providing a major challenge for cardiologists who seek to treat HFpEF patients. Using a translational approach, MUSC researchers and their colleagues are the first to address this challenge directly.

 MUSC Health cardiologists Michael R. Zile, M.D., and John S. Ikonomidis, M.D., Ph.D., along with their MUSC colleagues Catalin Baicu, Ph.D. and Amy Bradshaw, Ph.D., suspect that changes in certain fibrous proteins contribute to left ventricle relaxation deficits in HFpEF patients. Emerging data from a study led by Zile and published in the April 7, 2015 issue of Circulation1 examined changes in collagen and titin, two major fibrous proteins that constitute the physical scaffold necessary for normal relaxation in the heart. Using small myocardial muscle strips extracted from the hearts of 70 cardiac bypass surgery patients, Zile’s group discovered that a measure of ventricular muscle tension during relaxation, called passive stiffness, was pathologically increased in those patients with HFpEF. Just as suspected, this increase was dependent on changes in both collagen and titin. Importantly, these changes were only detected in patients with both hypertension and HFpEF. Moreover, biomarkers in patient plasma reflecting changes in collagen correlated with the presence and severity of HFpEF.

This work, undertaken at MUSC in collaboration with other centers, is the first to use tissue from HFpEF patients to pinpoint specific changes in titin and collagen as important underlying drivers of HFpEF development. How can this new information be used to help patients? Zile states that MUSC scientists are already collaborating with major pharmaceutical partners to develop new biomarker tools for HFpEF detection. “Proteins and peptides that indicate changes in collagen in the heart can be easily measured in small amounts of blood,” says Zile. “These biomarkers can be used to help make early diagnosis and predict prognostic outcomes in HFpEF patients. The arrival for these novel applications is just over the horizon.”


 1Zile MR, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015 Apr 7;131(14):1247-59.


In patients with HFpEF, thicker and stiffer ventricles impair normal relaxation and filling.